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ABSTRACT

This is a continuation of MRC Technical Summary Report

#997. The connection between monosplines and quadrature

formulae is used to determine the best quadrature formula for

f f(z)dz integrated along the unit circle. The quadrature

formula exact for all spline functions is also derived.



ON POLYNOMIAL SPLINE FUNCTIONS ON THE CIRCLE II.

MONOSPLINES AND QUADRATURE FORMULAE

1. J. Schoenberg

Introduction

In [4] we have studied the interpolator, properties of the class 8m k

of polynomial spline functions on the circle that were first discussed by

A1 lberg, Nilson and Walsh (see [1], also for further references). In the

present second paper we discuss quadrature formulae of the form
k-I

(1) ff(z)dz = ZCjfJ + Rf

U 0

where U is the unit circle I z I described counter-clockwise aad

w : exp(Zi/k) . This problem requires a discussion of monosplines and

will suggest several classes of spline functions and monosplines having note-

worthy properties. Free use is made of the results of [4], in particular of

B-splines and their Fourier series expansions.
1. Monoiines and quadrature formulae. Let k and rn be positive

integers. Our objective is to derive quadrature formulae of the form (1) which

are to be exact for polynomials of degree not exceeding m-i, i.e.

(1.1) Rf = 0 if fcTrrn-I

This property is equivalant to the relations
k-i

(1.) dz = 0 =Z ,Z , (V = 0,1,...,m-l)
U j =0

Sponsored by the United States Army under Contract No.: DA-31-124-ARO-D-462.
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and these show that the quadrature formula (1) has the property (1. 1) if and

only if
k-i nm-I

(1.3) the polynomial Z vanishes if x = I, ,...,I .
0

We conclude the following: 1. If m=>k then the polynomial (i. 3)

vanishes identically, hence C = 0 for all J . 2. If m<k then the poly-

nomial (1. 3) -1'till depends on k-m arbitrary linear parameters. Avoiding

trivial cases we shall assume that

(1.4) 1 -Sm<k

Expanding the binomials appearing in (1. 5) we see that the condition

(1. 3) is equivalent to the validity of the identity in zk-1 -(E. 5 (Z - - =0

0
At this point we reintroduce the class k of polynomial spline functions onn, k

U of degree m-i having the J as knots, and for a good reason. In fact the

identity (i. 5) is the precise condition for the existence of a function S(z) IE
mn~k

such that

(1.6) Ci = the jump of S(m-l)(z) at z = (j =0,..., k-1)

Indeed, if S(z) = Q(z)f rm-1 on the arc (W k-l,l) then the function on U

defined on the arcs (W k-l, 1), (it ), ... , ( 1-, 1) by the successive partial

sums of the expression
k-I (zj )m-I

Q(z) +YO (m-1)I
0

is, in view of (1. 5), a spline function S(z) with the property (1.6).

The connectior of the spline function S(z) with the quadrature formula

(1) is close as shown by

Lemma 1. If we write
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(1.7) K(z) zm - S(z)

ml

and if

(1.8) f(z) Cm (U)

then we have the relation
k-I

(1.9) 1` z)dz = k C f(J) + (-1)m K(z(m)(z)dz

U 0 U

Proof. By (1.6) and (1.7) we find that

(1.10) -C = the Jump of K(ml)(z) at z

Integrations by parts show that

.f K(z) fm)(z)dz =(z)z -fK f(fM-1) (z)dz ... (-l)m-lfK(m-l)(z)f'(z)dz
U U U

a point beyond which we can not continue the process because of the discon-

tinuities of K(m-l)(z) . However, we may proceed as follows
J+l

f K(z) flm)(z)dz :(-I) m-1• I Klm-l)(zlf'z) dz

U "J WJ J+l

M1 (rn-i) j+ (M-) f() f f (J z) 0K1ml,
(+(- K (z)0

and using (1. 10) we obtain
fKlzlfl(M)tl : (- 1 )rm-1 Zc f(WJ) +÷ (-1)mff(z)dz

U U

because dK(m-l)(z) = dz within each of the arcs.

Using a term familiar from the real axis case (see e. g. [ 31) we call K( z)

a monospline of degree m and denote their class by the symbol h We
m,k W

may then summarize our results as follows: To every quadrature formula (1)

with the property (,. 1) corresponds a monospline K(z) producing the identity

(1. 9). Conversely, to every rnonospline K(z) corresponds a quadrature

#1002 -3-



formula (1), the C being described by (1.6). This correspondence is one-

to-one up to an element of Tm-1 that we may add to K(z) without changing

our results. Our discussion of the quadrature formula (1) will single out cer-

tain spline functions and monosplines for special study.

2. The flower-sha:ed spline functions. Let S(z) a k and let us

assume that it satisfies th.e• functional equation

(2.1) S(z() = c (z) , ( zf = 1)

where r is an integer, 0 _5 r _5 k-l . We could say that S(z) is quasiperiodic,

or r-quasiperiodic. However, in view of the rotational symmetry of the image

of U by w = S(z) we prefer to say that S(z) is flower-shaped and also that

S(z) is an r-flower (see Fig. I in [ 4] showing the image of U by a 3-flower

for k=5, m=2).

In terms of the B-spline M (z) of [4] we havem

Lemma 2. For each r , 0 5 r < k-l, there is up to a constant factor a

unique r-flower given by the formula

(2.2) S(z) = kE jr M m(zw-,
J=O

Proof: By [ 4, Lemma 1 ] we may write

S(z) = Zc, Mm(z W-)

and (2.1) gives cC Mm(z}-J)= zcjJrMm(Zow-J) or cCJ 1 l Mm(zw-J) =

Ecj W M (Z )-J) , whence ci+ 1 = c1 J and finally cj = cO Jr . Setting

c= we obtain (2. 2) . Conversely, it is easily established that (2. 2)

satisfies (2. 1) and Lemma 2 is established.

The Fourier expansions of r-flowers are described by
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Lemma 3. If S(z) is an r-flower then, up to a constant factor,

(2.3) S(z)= if r =O, 1...,m-1 I

and
00 ks+r

(2.4) S(z) EL (ks+r)(ks+r-l)... (ks+r-re+l) r
S =-00

if r =m, e+l,.., k-I

Proof: We recall [(4, formula (2.16)] that

(2.5) M (Z) Z b- bVb l '-' b zm V
m 2ni -00VV V-m-

where
--v

(2.6) b1 l- 12 if v * 0 , b0 -=7

From (Z. 2) and (2.5)

S(z) = ... b _m+z
V =

or

(2.7) S(z) = b b12b b z V
Z •-- - V - 1 " " " V - m + 1

where the summation is over all v =- r (mod k) , hence v = ks + r. By (2. 6)

we see that b = 0 if v is a nonvanishing multiple of k. If 0 = r =5 m-I1'

then (2.7) is seen to reduce to the single term corresponding to s 0 or

v = r and this is Indeed proportional to (2. 3). Also directly it is clear that

z r C 9 and that z ±1 an r-fkcwer.
m~k

If m S r ' k-I we may discard on the right side of (2. 7) the non-

vanishing factor

k (l-°-r) (l--r+l) (1_w-r+m-l

and we obtain the expansion (2. 4)

#1002 -5-
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3. The monospline of least L -norm. We have already used the fact

k-I
(3. t) S(z) = ( W

0

-epresents the most general element of g Using (2 5) we find its
m, k U

Fc L, rier expansion to be
k-lI 3 b L i" -vj

S(Z) b V b v-I .lv'm+l z C2,ri bvmV J=O

'Jowever
k-1

( )3 = c 'I
j=O

in the finite Fourier series representation of an arbitrary periodic sequence

('n) of period k . This establishes

Lemma 4. The most general element of g is given bym, k

00
1 ~' V

(3. 3) S(z) = - b . b ivz
2Tri z v -'-1 v-m+l V

where ('1V) is an arbitrary periodic sequence of numbers of period k

It is now easy to determine the monospline

m Sz
(3.4) K(z) - S(z) zS() C ,

m! m, k

having least L2 -norm, or

(3.5) 1K 112 = ( f !K(z) 2dO) minimum , (z = e

Indeed, by Lemma 4 we may write

Klz) -L ._m -1/_ bv b z *v T

m! Z - i V" v-m+l V

- -b,. . . ml Iz - 1 . zv
~~~~~ Tr 2i bi'"bý•-- Vy' bV-m+l 'IV

v#m

and using Parseval's relation we obtain
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I K(z) 2 de b '.12+ ''" b'

2i 0 4Tr2 V-am(k)

(3.6) k-1 Im 2

+ 1211 b Ib... b V-M+iI
4Tr 1=0 v-l(k)

N m

Observe that by (2. 6)

Z Jbv... b V Nm+l2 > 0 for all integer I.
v-t(k)

It follows that in minimizing the right side of (3.6) we must have

(3.7) 0 if 1= O,l,..., m-l, m+1,..., k-i

Therefore the search reduces to the much narrower class of monosplines of the

form
I M I V

(3.8) K(z) =Lz - y- Z b... b
V-im(k)

In fact, by Lemma 3, we see that (3.8) describes the most general mono-

spline K(z) satisfying the relation

(3. 9) K(z w) w •oK(z)

Setting

(I -(l M-m)lW-rel).. (l_•-)1 m

we may write (3. 8) as

1 m ks+m

(3.10) K(z) z - (ks+l)(ks+z).. . (ks+m)S=-O0

and (3.6) becomes

s#0 fks+l) 2(ks+2)''". (ks+m) 2

and we are to determine the value of X that minimizes the right side. The

#1002 -7-



I

inequalities II-k. - I1-Rex I, X xJ _ IRe X show that this value of X

must be real. Writing

(3.12)2
s*O (ks+1) ... (ks+m)

we see from the identity

2 2 1> c
(Il-X) + cx = (I.c)(X- ) +c (c>O)

that the least value of the left-hand side is =c/(l+c) and that it is assumed

if X = X, = l/(l+c) By (3.12) we see that the right side of (3.11) is least

if k equals

3.13 =-0 ks+l ks+) 2 .. ks+m)2

The least value of the right side of (3.11) we now find to be equal c/(l+c) =

-1(X, -1)X, =* -k

We have therefore established

Theorem 1. The unique monospline (3. 4) of least L2 -norm is

1 m(3.14) K,(z) =•- z -k mZ

where
(z 0 ks+m

(3.15) Sim(Z) E (ks+l)(ks4Z)... (ks~m) z
S=-00

while X* is given by (3.13). The value of the least L -norm is
1

(3.16) IIK, If = V -y,) 2 x

4. The best quadrature formula (1.9) . We obtain the best quadrature

formula (1. 9), by the definition of the term "best" introduced by A. Sard [ 2],

if we choose in (1. 9) K(z) = K* (z) , and there remains to determine the
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coefficients Cj according to 11. 10). However, we have already noticed

that K*(z) satisfies the relation (3.9) which by differentiations yields

Klv (Z) = W K (z) and in particular

K(M-l)(zW) = M- (Z)

By (I.10) we see that

(4.1) Cj CO

and it therefore suffices to determine the jump A0 = - C of K(m-l)(z) at

z = 1 . It is easily obtained as follows.

Differentiating the Fourier series (3. 14) m-i times we get

(M-0- 1 ks+1(4.2) K, (Z) = z - kX s. 1

Its sum iS, as we know, a step function with discontinuities at the w. To

determine its jump A0 at z = 1 , we consider the function V( 0) of period0i

Zr such that

(4.3) 0(0) =½(Tr-0) if 0 < 0 < ez,

Defining also o(0) = 0 , we have the familiar expansion

go1 sin'0 I I e for all real 0
I s*0 s

from which we derive that

I 10 I c I ks+l iz•-,(k0)e = -z , (z=es* 0

Using (4. 2) we find the expansion
(4 ) •(rn-i)(ei8 18i __s___

(4.5) K (e ) + 21X kq(kO)e = (l-k) z + X zks+l
s#0 ks(ks+l)

which is secn to converge absolutely and uniformly on U . We conclude that

#1002 -9-



the left side belongs to C(,U) . The jump of the function p(e) being =

at 0= 0, by (4.3), we conclude that the jump 21 ,k- Tr of the second

term of the left side of (4. 5) cancels the jump A0 of the first term. Therefore

(4.6) 1&0 - k-i
0 k

Using the relations (4.1) we obtain

Theorem 2. Let 1 5 m < k Among all quadrature formulae of the form

(1) and having the property (L. 1), the best is the quadrature formula
(4.7) ff(z)uz :X ,Zrik- k-I ((jfl) + 1-I)m fK*(z)f(m) (z)dz

z J=O U

where K,(z) is the monospline of Theorem 1 while the positive fraction X,

is defined by (3.13) .

Theorem 2 does not state or imply that the familiar average (or Riemann

sum)

(4.8) A = Ziri k-I Z I)f
0

is not as good an approximation of the integral as the modified approximation

XA appearing in (4.7) . However, Theorem 2 does state that X*A is the

best approximation in the following sense: For all functions f(z) such that

(4.9) f Iflm( z) IdO 2-S H2

0

where H is a fixed constant, we have the ineqi,•ity

(4. 10) Iff(z)dz - ,A_ :-5 J*- H , (, = (Il -
mlU

For any other inequality

k-I
If f(z)dz - C f(i()) _-5 J.H

U 0
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valid for the class (4. 9), we must have J > J,

5. The quadrature formula that is exact if f e . We wish to
m k

determine the quadrature formula
k-I

(5.1) ff(z)dz E 0 Cf(j, + Rf
U0

such that

(5.2) Rf = 0 if fq e m,k

One way to construct such a formula is as follows. We assume that the class

8 has the Interpolatory property at the knots . By [ 4, Theorem I]

we must

(5. 3) exclude the case that k is even and m is odd.

We are then assured [4] of the existence of a fundamental furction

Lm(z) ( 9m, k such that
k-I

(5.4) f(z) mf()Lm(Zw-i)0 mM.9 k

Integrating both sides of this identity along U we see that (5.1) has the

property (5. 2) if we set

(5.5) C f Lm(zc-J)dz

Again we assume (5. 3). A second way of constructing this quadrature

formula is as follows. Let S0 (t) be the unique spline function such that

the monospline

(5.6) K (z) = m - S (z)0 ml 0

has the property

(5.7) K O(J) 0 (J = 0,...,k-l)

#1002 -12-



The existence and unicity of S0 (z) follow from [4, Theorem 11. We shall

now establish several pruperties of K0 ( z) which will show that this mono-

spline will produce the quadrature formula we are looking for.

I. The monospline (5.6) satisfies

(5.8) K0 (z m) = !0mK0 (z)

Proof: Clearly

W-mKO (zU) Z m - m
0z mlSo(Z)

is a monospline satisfying the relations (5. 7). The unicity of K0 (Z) impli -

the relation (5.8) .

Il. The quadrature formula

k-l
(5.9) ff(z)dz N c 0 f(J) + R f

U 0
C0 (n-I), J

where -C = the jump of K0 (z) Zat z = is exact if fE mk

Proof: By Lemma 1 we may write

R fof - .K Xoz)f(M)(z~dz KO(z)dfm-l) (z) if f ' Cm(U)
U U

However, the last form

(5.10) R Rof = .K 0-lz)dflm-11 z)
U

is also applicable (see proof of Lemma 1) if we only assume f (M-2)(z) to

be absolutely continuous and f(m-1)(z) of bounded variation on U . We

may therefore assume in (5. 9), (5.10) that f(z) 5 k and, therefore, that

f(m-l)(z) is a step function. If we denote by 6 its Jump at z = , then

(5.7) and (5.10) show that

*R 0 f= ZK 0 (J)6 1 = 0

-12-00



C = C 1 = O, ... , k-1)

Proof: Letting f(z) = (z -) in (5. 9), then (5.5) shows that
0 -,j

CI = f L (ZJl )dz = CU m

The explicit construction of the quadrature formula (5. 9) now presents

no difficulties. We conclude from the relation (5.8) that S0 (z) in an

m-flower and Lemma 3 implies that K0 (z) may be written as

0o
(5.11) Ko(z) 1 zm 10 Z I ks+m

m Q=-00 (ks+l)(ks+2)... (ks+m) z

for an appropriate value of the constant .0 ' The defining properties (5.7),

in particular K0 (1) = 0 show that

(5.12) (O ms l (ks.m)

( -0(ks+l)jks-2) ... ( M

This requires that the sum of the series in (5.12) should not vanish. By

[ 4, Lemma 4 ] this series can vanish only if m = k-1 and m is odd. But

this would imply that k is even and m is odd, a situation which can not occur

because of our assumption (5. 3)

We summarize our results in

Theorem 3. If we exclude the case that

(5.13) m=k-I and m is odd,

then

(5.14) £f(z)dz = kX0 ZlkI f(') + (-I f Kolz) z)dz
U 0 U

is a Quadrature formula that is exact if f( z) t ' where K-(z) and X

are described by (5.11) and (5.12) . If we replace (5.13) by the more strinaent

assumption (5. 3) then the quadrature formula (5.14) may also be obtained by

#1002 -13-



integration from the spline interpolation formula (5. 4)

The value C0 = 2wiiX0 /k used in writing the formula (5.14) follow

from (4.6) on replacing X, by X

6. The polynomial components of a certain spline function. The spline

!unction

(61) 
I zks+m

,6OI (ks+l)(ks+Z)... (ks+m)

appears in the representation (3.14), (3.15) of K*(z) as well as in (5. V)

which describes K0 (z) . By Lemma 3 it may also be characterized as an

m-flower of degree m-1 . Here we propose to determine explicitly its in-

dividual polynomial components. Without loss of generality we may assume

that m = k-l and determine the components of

o I ks+k-I
(6.2z) Sk-l(Z) = Z (ks+l)...(ks+k-[)

it being clear by differentiations tt.b*.

.(k-m-1)
(6.3) S (z) = -kml)(z) (I f-- m :_5 k-I)

m k-i

The functional equation
-- !

(6.4) S k-l(zw) = W_ "Sk-l(z)

shows that it suffices to determine the polynomial component in the arc (1, c)

Setting

(6.5) = exp(ni/k)

we turn Sk-l(z) by P to obtain, since 4 k = -I , the new spline function

00 -s+l ks+k-I
(6.6) s(z) = IS(zP) = z

having its knots in the new locations 4awJ . Let
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k-2 k-3
z

(6.7) P0 (z) =a0 (k-2)) l (k- 3 )) ak2

be the componeznt of s (z) in the arc (1-I, 4s) . The Laurent series (6. 6)

having real coefficients it is clear that Pz) = P( i) if z is on the arc

(j-l, ,i) and therefore also for all z . This shows that P0 (z) is a real

polynomial. Also s(z) satisfies the relation s(zwc) = w-l s(z) whence

-1 -l
(6.8) s(z) W -1 s(z )l

If z is Ir. the arc (tp, q~), then (6.8) and (6.7) show that the com-

ponent of s(z) on this arc is

k-2 2 k-3 k-I
(6.9) 1(z 0 O• (k -2)-- - +a1 (k-3)1 +" "+ k-2•

At this point we use that s(z) c k-3(U) and obtain at z = t the k-2

equations

(6.10) pJ)() = pV)(4,) (v0O,...,k-3)
01

Using (6. 7) and (6. 9) we obtain the system

S- i Vl-1

-l + al(w2 -l l)l + +a ( -I) =0 (v1,...,k-2)00(-l)I

v +1
Dividing by vL+ - 1 and using the relations

(-
1  2iL -0 a = -a= I sin(Tra/k)

(2-1 (3-a) I (P -a)l 13 • (p3-&)l sin( Trp3/k)

we obtain the system

0 =- a sin(-r/k) ' a sin(Zw/k)
11 0

0 = _ aO sin(ir/k) + i- aL sin(Zyt/k) + a 2 sin(3n/k)

0 1 •0 n(/ 1
ksin(2n/k) + ... + akZsin((k-l)w/k)

(k21a0 sn7/)+(k 13)1 a1 -

#1002 -15-



which in terms of the new unknowns

sn(v+l)i ( = O, k-0

(6.11) pv = as k ""V0 -2)

becomes

0= PO o + 1 Pl +

0 1= 1 1

(k-Z)l •0 + (k-3)1l 11 + "" -k-3 + Pk-2

This being the system giving the coefficients of the rower series reciprocal

to x Zxvvl we obtain a solution pv = (-1) V /vl and by (6.11)

(6.12) a =(-l)/ sin(rj]"2L) I (v=0,...,k-2)(V ! sin k' "

From (6.6) and (6. 7) we therefore obtain the identity

(6. 13 -1)-s ks+k-l k-2 k-v- (v+l)w
-I( 1 zks.-I-11 z /sin k(ks~l)... (ksk-l-) v=Ov

valid in the arc (-, ,) , while c is a constant yet to be determined.

To obtain c we set z = I to obtain

00 k-2 vlr
(6.14) E (ks+l)(-l s(ks+k-1) = c.E (-.•21 ;v-)/sin k-0o 0 0

However, the left side Is easily evaluated directly from the partial fraction

decomposition

(615I = 1 r........ - ÷ )....�.. 4 .(-1 ) k2 k
(6.15) (ks+l)... (ks+k-l) -27) ks) 1l

From the classical expansion Z (-l)S/('L+x) = w/sinTrx we obtain

ks+v+l ki(VQ)r
k sin k
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If we multiply (6.15) by (-I)s and sum over all s we have

E = 7 k-2n
00(ks+l)... (k s Tk-I) [k - Z) Ik (-) Z ( -k

-• 0

Comparing with (6.14) we find that

(6.16) C - (k-?)rk

Using the relation (6. 3) we can also determine the polynomial com-

ponent of (6.1) within the arc (I, W) . Indeed

4-m Si(z4) = 7 s-.!-l)s - ks+mSm 'I (ks+). .. (ks+m) z

and differentiating (6.13) k-m-l times we obtain that

i-Tr vI m mvi/n r
(6.17) 4 -m S(z4) = k(m-l) Z (-l) )z m-v/sn k

m k~~m-ll ,.O

if z is confined to the arc (4l, to

As an example let us determine K,(z) using the formulae (3.14),

(3.15) for k = 5 and m = 2 . The rapidly convergent series (3.13) shows

that =. 969690 , and (6.17) furnishes the expression

JP-2K(O=Iz2 iT 1___

-K, - l(
4- ~ ~ Z4 z-k sin(*rl5) 2 2Cos 5)

in the arc (4-l, 4) Graphing the image of the arc (4-I, 41) by the quadratic

polynomial on the right side and turning it by 4' = Lj (or + 720) we obtain

the image of the arc (I, ta) by w = K,(z) . The functional equation

K,(Z•,) W 2 K,(z)

allows to complete the image of the entire circle U which is shown in Fig. I.

The five corners of the curve are the images of the w, , Fig. I showing in

parentheses the corresponding w Moreover

#1002 -17-



IK(J)I = .14063 , IK(IJI) = .10409

A generNl discussion and determination of the monosplines K(z) of

least L.0 - norm would be of interest.

4
(1))

3

Fig. 1
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